
Copyright © 2016 California Department of Transportation. All rights reserved.

Embedding the Postmile Query Tool
Table of Contents
Introduction .. 1

Integration .. 1

Invoking the Postmile Query Tool ... 1

Servers, Protocols and License keys.. 3

GoogleMap API LIcense .. 3

Embedding for non-Caltrans hosts (not valid or supported) .. 4

Getting a GoogleMap API key ... 4

Providing the key to the Postmile Query Tool. ... 4

White-Listing the Postmile Query Tool ... 4

Getting data into and out of the tool .. 4

Initializing the Postmile Query Tool .. 7

Configuring the Postmile Query Tool .. 7

Customizing the Help System ... 10

Help System Files .. 10

helpPages.html ... 10

navHelp.js .. 11

helpPages.css .. 12

Table of Figures
Figure 1. <script> tag to invoke the Postmile Query Tool... 1

Figure 2. Page created by HTML shown in Figure 3. ... 2

Figure 3. HTML code to generate the page shown in Figure 2 .. 3

Figure 4. <script> tag to invoke the Postmile Query Tool with an API key. .. 4

Figure 5. Javascript to create and initialize a ct.PMQT.InputControls instance. .. 5

Figure 6. Javascript to create and initialize a ct.PMQT.ControlsConfig instance.. 9

Figure 7. Structure of the Help System HTML. ... 10

 List of Tables
Table 1. Properties of ctPMQT.InputControls .. 5

Table 2. Properties of the ct.PMQT.ControlsConfig class that you can modify. ... 8

Table 3. Functions defined in navHelp.js .. 11

Embedding the Postmile Query Tool

1

Embedding the Postmile Query Tool
Introduction
The Postmile Query Tool is an interactive map interface that enables a user to query the Postmile Web

Service. The user can:

 Validate that a postmile specification identifies a recognized postmile;

 Determine the geo-coordinates associated with a postmile;

 Determine the State odometer corresponding to a postmile;

 Determine the recognized postmile that is geographically closest to a given set of geo-

coordinates;

 Validate a pair of postmiles representing a segment of a roadway; and

 Determine the route segment whose endpoints are closest to a pair of geo-coordinates.

Validated postmiles and route segments are visually displayed on a map, and the user can specify geo-

coordinates by dragging markers on the map.

This style of interaction with the Postmile Web Service can be a useful adjunct in a web application that

requires capture of postmile, state odometer or geo-coordinate data. However, as a standalone website,

using the Postmile Query Tool is somewhat awkward, as there is no easy way to pass information back

and forth between the tool and the web application, apart from manual cut-and-paste. It would be

much better for the user if the tool were integrated with the application.

This document describes how the Postmile Query Tool can be integrated into any web application built

on any platform.

Integration
There are three aspects to integration:

1. The application must be able to invoke the tool programmatically, and show it on a page of the

application;

2. The application should be able to initialize the tool (with, for example, a specific postmile to be

validated, a specific map region to show, etc.) and configure it (specify which mode the tool

should start out in);

3. The application should be able to obtain information from the tool (what postmile has been

validated, what geo-coordinates the user specified, etc.)

Invoking the Postmile Query Tool
To place the Postmile Query Tool on your web page, you must do the following:

1. Load the Postmile Query Tool API using a script tag:

<script src="https://postmile.dot.ca.gov/PMQT/scripts/PMQTEmbed.js"

type="text/javascript" ></script>

Figure 1. <script> tag to invoke the Postmile Query Tool.

Embedding the Postmile Query Tool

2

2. Include a div with an id to hold the tool in your html layout;

(e.g., <div id=”postmileTool”></div>)

3. Invoke the javascript function ct.PMQT.addPMQT, passing it the name of the div that

should hold the tool. For example, you can invoke it as part of the onload attribute for the

body of your page: <body onload=”ct.PMQT.addPMQT(‘postmileTool’)”>

N.B.: The ct.PMQT.addPMQT function should only be called ONCE for any html page.

This puts the Postmile Query Tool on your page in the div that you specified. (N.B.: the page should be

an HTML5 page, declared using the <!DOCTYPE html> tag.)

For example, the page shown in Figure 2 would be created by the HTML code in Figure 3.

Figure 2. Page created by HTML shown in Figure 3.

The Postmile Query Tool is incorporated into your page in an iframe element. This isolates it from your

page, so there are no name collisions between the names and ids you use for your html elements, css

classes and Javascript functions, and those used by the tool.

That’s all there is to putting the tool on your page, providing your application is hosted by Caltrans. If it

isn’t, see the subsection below entitled “Servers, Protocols and License keys.”

However, to enable communication between your application and the tool, and to configure the tool,

you must supply additional arguments to the ct.PMQT.addPMQT function. These are addressed in the

sections entitled “Getting data into and out of the tool” and “Configuring the Postmile Query Tool”.

Embedding the Postmile Query Tool

3

<!DOCTYPE html>

<html>

 <head>

 <title>Test Embed PMQT</title>

 <script

 type="text/javascript"

 src="https://postmile.dot.ca.gov/PMQT/scripts/PMQTEmbed.js">

 </script>

 </head>

 <body onload="ct.PMQT.addPMQT('Map')">

 <h1>Test of embedding Postmile Query Tool</h1>

 <div id="Map">

 </div>

 </body>

</html>

Figure 3. HTML code to generate the page shown in Figure 2

Servers, Protocols and License keys
There are four servers hosting the Postmile Query Tool:

 https://postmile.dot.ca.gov – the public-facing unrestricted production version;

 http://postmile-internal.dot.ca.gov – the internal production version on the Caltrans intranet;

 http://postmile-dev.dot.ca.gov – the internal intranet version intended for development of the

Postmile Query Tool;

 http://postmile-test.dot.ca.gov – the internal intranet version intended for User Acceptance

Testing of updated versions.

Please note that: if you access the Embeddable Postmile Query Tool from the “postmile” server (as

shown in the example), then you must use the “https” (secure transport layer) protocol in the url of the

<script> tag. Also, this will access the GoogleMap Javascript API using the “external” version of the

Caltrans license for the API, which is intended for sites that are outside the firewall and have

unrestricted access.

If you access it from any of the other hosts, you must specify the “http” protocol.

The postmile-internal site uses the “internal” version of the Caltrans license for the API, which is

intended for “internal” applications: sites that can only be accessed from inside the firewall, or that

require login credentials to access.

The postmile-dev and postmile-test sites use a free, private development key for the API, which is

intended only for development and test.

GoogleMap API LIcense
The Postmile Query Tool uses the GoogleMap Javascript API to display the map. If your application is

served by a California Department of Transportation server (i.e., the domain matches *.dot.ca.gov and

the scheme/protocol is http or https) then the Postmile Query Tool will use Caltrans’ own license key for

the GoogleMap Javascript API (as noted above in “Servers, Protocols and License keys”).

https://postmile.dot.ca.gov/
http://postmile-internal.dot.ca.gov/
http://postmile-dev.dot.ca.gov/
http://postmile-test.dot.ca.gov/

Embedding the Postmile Query Tool

4

We would like to have made the Postmile Query Tool available for other hosts, by enabling them to

submit their own API license key (or client ID). However, Google does not provide a hacker-proof way to

verify that the key presented to us is valid for the host wishing to embed the tool. (The Google license

also apparently explicitly prohibits this sort of iframe-based embedding.) Therefore, the next section,

which describes how a non-Caltrans host could embed the Postmile Query Tool by providing its own

license key, is not currently valid (and won’t be, unless Google changes its policy).

Embedding for non-Caltrans hosts (not valid or supported)
If your application is served by a host from any other domain, then you must do the following:

1. Obtain your own license key for the GoogleMap Javascript API;

2. Provide your key to the Postmile Query Tool;

3. White list the Postmile Query Tool as an acceptable referrer for your key.

4. White list your application host as an acceptable referrer for your key.

Getting a GoogleMap API key
You can obtain a license key for the GoogleMap Javascript API from Google by going to

https://developers.google.com/maps/documentation/javascript/ and clicking the “Get a key” button.

Google will walk you through the steps of creating a project, activating the API, and generating a key.

Providing the key to the Postmile Query Tool.
You provide your own license key for the API by including it as a parameter in the URL for the <script>

tag that loads the Postmile Query Tool:

<script>src="https://postmile.dot.ca.gov/PMQT/scripts/PMQTEmbed.js?key

=<your API key>" type="test/javascript" ></script>
Figure 4. <script> tag to invoke the Postmile Query Tool with an API key.

White-Listing the Postmile Query Tool
If you restrict the use of your license key by setting a “white list” of acceptable referrers

(recommended), then to use that key with the Postmile Query Tool you must add

“*postmile.dot.ca.gov/*” (the host from which you are accessing the Embeddable Postmile Query Tool)

to your list of acceptable referrers. (It is important that the domain that hosts your application is also

listed as an acceptable referrer, even though your application may not directly invoke the Google Map

API, because this is how the Postmile Query Tool server will ensure that your key isn’t being used

illegally by another host.)

(End of invalid, unsupported section.)

Getting data into and out of the tool
The principal way that your application and the Postmile Query Tool will communicate is through html

(hidden) input elements. You create an input element on your page that corresponds to each datum

that you wish to share with the tool. You give each such element a unique id, then you tell the Postmile

Query Tool what these ids are. If any of these input elements have values, those values will be used to

initialize the corresponding elements within the tool. Each time a user interaction with the tool changes

the values of any of the corresponding elements, the new values will be communicated back to your

https://developers.google.com/maps/documentation/javascript/

Embedding the Postmile Query Tool

5

application page by updating the values of your input elements. If these elements are part of a form,

then you can communicate the values back to your web application by submitting the form.

You tell the Postmile Query Tool the id of the input element for each datum by creating and configuring

an instance of the class ct.PMQT.InputControls. You then pass this instance as the second

argument in the call to the ct.PMQT.addPMQT function. This class has a property for each datum

that can be communicated between your application and the Postmile Query Tool. These are listed in

Table 1.

For example, if your application wanted to initialize and/or track the geo-coordinates in decimal format,

you would create input elements with ids like “latitude” and “longitude”, then do the following:

<script>

 var controls = new ct.PMQT.InputControls();

 controls.latDecimal = "latitude";

 controls.lngDecimal = "longitude";

</script>

<input id="latitude" hidden="hidden" />

<input id="longitude" hidden="hidden" />

Figure 5. Javascript to create and initialize a ct.PMQT.InputControls instance.

Then your call to add the tool to the page would look like:

ct.PMQT.addPMQT('postmileTool', controls).

Table 1. Properties of ctPMQT.InputControls

Property Description

Postmiles (Text format)

postmileSpec
Text specification of the postmile for the Point, or the first postmile of the Line
(to be) validated

postmileSpec2 Text specification of the second postmile of the Line (to be) validated

Postmiles (Components)

postmileRoute Route number of the route for the postmile(s) (to be) validated

postmileRouteSuffix Route suffix of the route for the postmile(s) (to be) validated

postmileCounty
County code of the county for the postmile of the Point or the first postmile of
the Line (to be) validated

postmileCounty2 County code of the county for the second postmile of the Line (to be) validated

postmilePrefix
Postmile Prefix of the postmile of the Point or the first postmile of the Line (to
be) validated

postmilePrefix2 Postmile Prefix of the second postmile of the Line (to be) validated

postmileValue
Postmile Value of the postmile of the Point or the first postmile of the Line (to
be) validated

postmileValue2 Postmile Value of the second postmile of the Line (to be) validated

postmileSuffix
Postmile Suffix of the postmile of the Point or the first postmile of the Line (to
be) validated

postmileSuffix2 Postmile Suffix of the second postmile of the Line (to be) validated

Embedding the Postmile Query Tool

6

Property Description

Geo-coordinates (Decimal format)

latDecimal
Latitude (in decimal format) of the geo-coordinates pushpin marker (Point
mode) or the first geo-coordinates pushpin marker (Line mode)

latDecimal2
Latitude (in decimal format) of the second geo-coordinates pushpin marker
(Line mode)

lngDecimal
Longitude (in decimal format) of the geo-coordinates pushpin marker (Point
mode) or the first geo-coordinates pushpin marker (Line mode)

lngDecimal2
Longitude (in decimal format) of the second geo-coordinates pushpin marker
(Line mode)

Geo-coordinates (Deg/Min/Sec/Card format)

latDeg
Degree component of the latitude of the geo-coordinates pushpin marker
(Point mode) or the first geo-coordinates pushpin marker (Line mode)

latDeg2
Degree component of the latitude of the second geo-coordinates pushpin
marker (Line mode)

lngDeg
Degree component of the longitude of the geo-coordinates pushpin marker
(Point mode) or the first geo-coordinates pushpin marker (Line mode)

lngDeg2
Degree component of the longitude of the second geo-coordinates pushpin
marker (Line mode)

latMin
Minutes component of the latitude of the geo-coordinates pushpin marker
(Point mode) or the first geo-coordinates pushpin marker (Line mode)

latMin2
Minutes component of the latitude of the second geo-coordinates pushpin
marker (Line mode)

lngMin
Minutes component of the longitude of the geo-coordinates pushpin marker
(Point mode) or the first geo-coordinates pushpin marker (Line mode)

lngMin2
Minutes component of the longitude of the second geo-coordinates pushpin
marker (Line mode)

latSec
Seconds component of the latitude of the geo-coordinates pushpin marker
(Point mode) or the first geo-coordinates pushpin marker (Line mode)

latSec2
Seconds component of the latitude of the second geo-coordinates pushpin
marker (Line mode)

lngSec
Seconds component of the longitude of the geo-coordinates pushpin marker
(Point mode) or the first geo-coordinates pushpin marker (Line mode)

lngSec2
Seconds component of the longitude of the second geo-coordinates pushpin
marker (Line mode)

latDir
Direction component (as compass cardinal point) of the latitude of the geo-
coordinates pushpin marker (Point mode) or the first geo-coordinates pushpin
marker (Line mode)

latDir2
Direction component (as compass cardinal point) of the latitude of the second
geo-coordinates pushpin marker (Line mode)

lngDir
Direction component (as compass cardinal point) of the longitude of the geo-
coordinates pushpin marker (Point mode) or the first geo-coordinates pushpin
marker (Line mode)

lngDir2
Direction component (as compass cardinal point) of the longitude of the
second geo-coordinates pushpin marker (Line mode)

Embedding the Postmile Query Tool

7

Property Description

State Odometers*

stateOdometer
State Odometer of the postmile for the Point or the first postmile of the Line
validated

stateOdometer2 State Odometer of the second postmile for the Line validated

*currently, state odometers are outputs only: the Postmile Query Tool does not currently validate

postmiles starting from a state odometer.

Initializing the Postmile Query Tool
If your web application generates the input control html elements with initial values, then these values

will be used to initialize the corresponding values in the Postmile Query Tool.

This raises an issue: some input elements specify values for the same variable redundantly, and some

values must be consistent with one another, or have components that must be self-consistent. For

example, specifying a decimal latitude of latDecimal = 37.229444 is the same as specifying latDeg = 37,

latMin = 13, latSec = 46.0 and latDir = ‘N’. What should the Postmile Query Tool do if the elements for

the two different ways of expressing the latitude specify two different latitudes?

As another example, the two postmiles for a Line validation should be mutually consistent (they should

have the same route and route suffix, if any, and have county codes for counties that both contain the

specified route. Thus, postmileSpec = “BUT 6 0.372” and postmileSpec2 = “COL 16 4.023” are mutually

inconsistent (and self-inconsistent):

1. The BUT (Butte) and COL (Colusa) counties have no routes in common, and the two

specifications indicate different routes (6 vs 16) in any case;

2. Route 6 does not pass through Butte county.

Syntactic inconsistency (two expressions for the same variable that don’t evaluate to the same value) is

handled by following some precedence rules. For example, the decimal format expressions of geo-

coordinates overrule the degree/minute/second/cardinal point expressions. Thus, the latter will

populate the geo-coordinates only if they have values and the decimal inputs do not.

Semantic inconsistency (selections for components of a specification being geographically inconsistent)

are handled in the same way they would be if the user interactively typed them into the tools’ input

controls. That is to say, inconsistent selections are disallowed and filtered out.

The precedence rules are:

1. Postmile text specifications overrule postmile individual component selections;

2. Decimal geo-coordinates overrule deg/min/sec/card format coordinates.

When initializing the two postmiles for a line, the postmiles are entered in the order postmile 1 followed

by postmile 2.

Configuring the Postmile Query Tool
Your application may want to exert some control over the appearance and functionality of the Postmile

Query Tool, to customize it for the role it plays in your application. For this purpose, the

ct.PMQT.addPMQT function accepts a third argument. The value passed as the third argument, if any,

Embedding the Postmile Query Tool

8

should be an instance of the class ct.PMQT.ControlsConfig. Table 2 lists the properties of this class

that you can choose to set, their default values, and what they mean.

Table 2. Properties of the ct.PMQT.ControlsConfig class that you can modify.

Property Default Description

includePointMode true
Whether the user should be able to select
Point Mode. If this value is false, no Point vs
Line radio buttons will be displayed.

includeLineMode true
Whether the user should be able to select
Line Mode If this value is false, no Point vs
Line radio buttons will be displayed.

mode “Point”

The initial mode. Must be “Point”, “Line” or
null. This value is moot when only one mode
is enabled. If null, the tool will use cookies to
start out in the same mode in which it was
last used within the browser.

includePostmileComponents true

Whether the user can select to enter/view
postmiles using the component drop-down
lists. If this value is false, the “Components”
check box will not be displayed.

includePostmileTextSpec true

Whether the user can select to enter/view
postmiles as text specifications. If this value is
false, the “Components” check box wil not be
displayed.

postmileFormat “Components”

The initial format in which postmiles are
displayed. Must be “Components”, “Text” or
null. This value is moot when only one format
is enabled. If null, the tool will use cookies to
start out in the same format in which it was
last used within the browser.

includeGeoDecimalFormat true

Whether the user can select to enter/view
geo-coordinates in decimal format. If this
value is false, the “Deg/Min/Sec/Card”
checkbox will not be displayed

includeGeoDegMinSecCard true

Whether the user can select to enter/view
geo-coordinates in
degrees/minutes/seconds/cardinal Compass
point format. If this value is false, the
“Deg/Min/Sec/Card” checkbox will not be
displayed

geoFormat "Deg/Min/Sec/Card"

The initial format for displaying geo-
coordinates. Must be “Deg/Min/Sec/Card”,
“Decimal” or null. This value is moot if only
one format is enabled. If null, the tool will use
cookies to start out in the same format in
which it was last used within the browser.

includeViewCountyBoundaries true
Whether the user can select to view the
county boundaries, routes and calibration

Embedding the Postmile Query Tool

9

Property Default Description

postmiles. If this value is false, the check box
for this functionality will not be displayed.

viewCountyBoundaries false
Whether the county boundaties view should
be set initially. This value is moot if the
functionality is not enabled.

includeHelp true

Whether the user should be able to view the
help pages. If this value is false, the help
button is not displayed, and the initial help
page is not displayed.

showHelp false
Whether the first help screen should be
displayed initially (moot when Help is not
enabled).

validatePostmiles false
Whether the tool should attempt to validate
the initial values for postmiles.

validateGeoCoordinates false
Whether the tool should attempt to validate
the initial geo-coordinates (i.e., determine
the postmiles closest to the geo-coordinates)

mapCenterLatitude null

Latitude of the location on which to center
the map display. Moot if postmiles or geo-
coordinates are validated, as the validation
process will determine the map center
(unless the validation fails). If null a default
location in the center of the state is used.

mapCenterLongitude null

Longitude of the location on which to center
the map display. Moot if postmiles or geo-
coordinates are validated, as the validation
process will determine the map center
(unless the validation fails). If null a default
location in the center of the state is used.

mapZoom null

An integer between 0 (show entire world)
and 19 (2^19 times closer) determining the
initial zoom level for the map. If null a zoom
level that shows the entire state is used.

If you do not provide an instance of the ct.PMQT.ControlsConfig class, or if you create an instance

and pass in it unmodified, then the default values shown in the table will apply. The following code

shows how you would arrange that the tool starts out in line mode (but preserves the option to select

point mode) and shows geo-coordinates only in decimal format (making the degrees/minutes/seconds/

cardinal compass point format unavailable):

<script>

 var configuration = new ct.PMQT.ControlsConfig();

 configuration.mode = "Line";

 configuration.includeGeoDegMinSecCard = false;

</script>

Figure 6. Javascript to create and initialize a ct.PMQT.ControlsConfig instance.

Embedding the Postmile Query Tool

10

You would then invoke the tool with the call:

ct.PMQT.addPMQT('postmileTool', controls, configuration)

Customizing the Help System
The Postmile Query Tool comes with a built-in system of help pages that discuss what a postmile is,

what controls the tool has and how to use them, and other topics helpful to the user. If you customize

the tool by configuring its controls, then some of these help pages will contain information that is not

relevant, and possibly incorrect for your customized version of the tool. Also, these pages are perforce

not designed to be relevant to the specific application in which you are embedding the tool.

For these reasons, you will likely want to customize the help pages also.

The tool does not have a mechanism for modifying the content of the help pages for a specific context.

Instead, the way to customize the help system is to turn it off completely within the tool (by setting the

configuration parameter includeHelp = false), and to set up your own application-specific help system in

your embedding application.

You are, of course, free to accomplish this in any way that fits your needs. However, the Postmile Query

Tool exposes its own simple help system as a possible starting point.

Help System Files
The Postmile Query Tool help system consists of just three files:

https://postmile.dot.ca.gov/PMQT/css/helpPages.css -- a simple Cascading Style Sheet for help pages

https://postmile.dot.ca.gov/PMQT/scripts/navHelp.js -- a Javascript file for navigating help pages

https://postmile.dot.ca.fov/PMQT/helpPages.html -- an html page containing the help page information

helpPages.html
The “help system” information is contained entirely within one html file with the following structure:

<!DOCTYPE html>

<html>

 <head> … </head>

 <body>

 <div id="HelpFrame" style="display:inline-block;" >

 <div> … </div> (for “close button”)

 ↓ (one “HelpPage” div for each help page, each with a unique id)

 <div class="HelpPage" id="…" style="display:none"> … </div>

 <div class="HelpPage" id="…" style="display:none"> … </div>

 <div class="HelpPage" id="…" style="display:none"> … </div>

 <div class="HelpPage" id="…" style="display:none"> … </div>

 <div class="HelpPage" id="…" style="display:none"> … </div>

 …

 <table>…</table> (for “prev”, “back” and “next” buttons)

 </div>

 </body>

</html>

Figure 7. Structure of the Help System HTML.

https://postmile.dot.ca.gov/PMQT/css/helpPages.css
https://postmile.dot.ca.gov/PMQT/scripts/navHelp.js
https://postmile.dot.ca.fov/PMQT/helpPages.html

Embedding the Postmile Query Tool

11

In other words, the entire content of the help system is in one div with the id “HelpFrame.” This div

contains a div at the beginning to hold the “close” button, and a table at the end that holds the other

navigation buttons. Between these two elements, there is one div for each help page. Each help page div

has a unique id. Each page must also have the class= “HelpPage.”

The sequence of the help page div’s within the help frame div is the order in which the pages are visited

using the “Next” button.

If you need to insert a hyperlink from one page to another (such as in a table of contents or a footnote),

you insert a link like the following:

<a href="#" title="View topic: How to: Line Mode"

 onclick="showHelpPage('HowToLineMode')">How to: Line Mode

The key factor is to set the “onclick” attribute of the link to a call to the showHelpPage function, passing

the id of the div to be displayed.

navHelp.js
The navHelp.js Javascript file can be used as is, simply by referencing it within your help page html file

using an external <script> tag. It defines only one global variable and seven functions.

The global variable is named topicStack. This is an array implementing a stack that tracks what pages the

user has visited, in order to implement the “back” button. Each visited page is represented in the stack

by a string giving the id of the page. Each “page” is a div with a unique id.

The functions are:

Table 3. Functions defined in navHelp.js

Function Description

hideHelp() Makes all help page divs and the help frame invisible by changing
their style.display property.

showHelpPage(pageId) Makes the help frame and the help page div with the indicated id
visible.

showNextPage() Implements the “Next” button by hiding the currently visible page,
and making the next one visible.

showPrevPage() Implements the “Previous” button by hiding the currently visible
page, and making the previous one visible.

showReturnPage() Implements the “Back” button by hiding the currently visible page,
and making the last visited page visible.

nodeListIndexOf(nodeList,
testfn)

A helper function that determines the index within an html nodelist
of the element that satifies the testfn.

visiblePage(div) A test function that determines whether the div element of a help
page is currently visible.

pageHasId(div, pageId) A test function that determines whether the div element of a help
page has the specified id.

Most of the functions are used to implement the navigation buttons within the help system. If you use

the Postmile Query Tool helpPages.html as the starting point for creating your own set of pages, then

Embedding the Postmile Query Tool

12

the only function you need to use is showHelpPage. You use this both to open the help system on its

first page (your “show help” button), and to implement hyperlinks between the pages.

However, if you use this file It will be important not define functions or variables that collide with these

names.

helpPages.css
The helpPages.css file can be used as is, by referencing it using a <link> tag within your help page file.

This file defines six classes that determine the appearance of the help navigation buttons, and it

provides two classes used to determine the appearance of the help frame: HelpFrameOverlay and

HelpFrameSequential. The Postmile Query Tool normally uses the first of these two classes to overlay

the help frame “window” over the map area, but switches to the alternate when the window’s width is

too narrow. You may wish to create a completely different class to define the appearance and location

of your help frame div, in your own .css file.

You should avoid name collisions with the following class names:

1. HelpPage (identifies divs as help pages)

2. HelpFrameOverlay

3. HelpFrameSequential

4. HelpNavButton (defines defaults for the appearance of all the help buttons)

5. HelpButton (defines the appearance of the “show help” button)

6. CloseButton (defines the appearance of the “close” button)

7. NextButton (defines the appearance of the “next” button)

8. PrevButton (defines the appearance of the “previous” button)

9. BackButton (defines the appearance of the “back” button)

Nota Bene: If you re-use any of the Postmile Query Tool help pages in your application-specific help

system, be aware of the following caveat: these pages reference images using relative pathnames (such

as src="images/Help_icon_100x100.png". For your pages to work, you will have to substitute

absolute pathames, as in

src="https://postmile.dot.ca.gov/PMQT/images/Help_icon_100x100.png".

To invoke your help system, you can include a button like this:

<button class="HelpNavButton HelpButton"

 onclick="showHelpPage(<id of your first page>)"
 title="Open Help Window"></button>

